Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4991, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591859

RESUMO

Activation of the KRAS oncogene is a source of replication stress, but how this stress is generated and how it is tolerated by cancer cells remain poorly understood. Here we show that induction of KRASG12V expression in untransformed cells triggers H3K27me3 and HP1-associated chromatin compaction in an RNA transcription dependent manner, resulting in replication fork slowing and cell death. Furthermore, elevated ATR expression is necessary and sufficient for tolerance of KRASG12V-induced replication stress to expand replication stress-tolerant cells (RSTCs). PrimPol is phosphorylated at Ser255, a potential Chk1 substrate site, under KRASG12V-induced replication stress and promotes repriming to maintain fork progression and cell survival in an ATR/Chk1-dependent manner. However, ssDNA gaps are generated at heterochromatin by PrimPol-dependent repriming, leading to genomic instability. These results reveal a role of ATR-PrimPol in enabling precancerous cells to survive KRAS-induced replication stress and expand clonally with accumulation of genomic instability.


Assuntos
Heterocromatina , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/genética , Cromatina , DNA Primase , DNA Polimerase Dirigida por DNA , Instabilidade Genômica , Heterocromatina/genética , Enzimas Multifuncionais , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
Cancer Sci ; 114(7): 2709-2721, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37189251

RESUMO

DNA replication stress (RS) causes genomic instability and vulnerability in cancer cells. To counteract RS, cells have evolved various mechanisms involving the ATR kinase signaling pathway, which regulates origin firing, cell cycle checkpoints, and fork stabilization to secure the fidelity of replication. However, ATR signaling also alleviates RS to support cell survival by driving RS tolerance, thereby contributing to therapeutic resistance. Cancer cells harboring genetic mutations and other changes that disrupt normal DNA replication increase the risk of DNA damage and the levels of RS, conferring addiction to ATR activity for sustainable replication and susceptibility to therapeutic approaches using ATR inhibitors (ATRis). Therefore, clinical trials are currently being conducted to evaluate the efficacy of ATRis as monotherapies or in combination with other drugs and biomarkers. In this review, we discuss recent advances in the elucidation of the mechanisms by which ATR functions in the RS response and its therapeutic relevance when utilizing ATRis.


Assuntos
Dano ao DNA , Neoplasias , Humanos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Pontos de Checagem do Ciclo Celular , Replicação do DNA , Quinase 1 do Ponto de Checagem/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/genética
3.
Biochim Biophys Acta Mol Cell Res ; 1870(6): 119484, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37201767

RESUMO

Ataxia-telangiectasia mutated and Rad3-related (ATR) kinase is a crucial regulator of the cell cycle checkpoint and activated in response to DNA replication stress by two independent pathways via RPA32-ETAA1 and TopBP1. However, the precise activation mechanism of ATR by the RPA32-ETAA1 pathway remains unclear. Here, we show that p130RB2, a member of the retinoblastoma protein family, participates in the pathway under hydroxyurea-induced DNA replication stress. p130RB2 binds to ETAA1, but not TopBP1, and depletion of p130RB2 inhibits the RPA32-ETAA1 interaction under replication stress. Moreover, p130RB2 depletion reduces ATR activation accompanied by phosphorylation of its targets RPA32, Chk1, and ATR itself. It also causes improper re-progression of S phase with retaining single-stranded DNA after cancelation of the stress, which leads to an increase in the anaphase bridge phenotype and a decrease in cell survival. Importantly, restoration of p130RB2 rescued the disrupted phenotypes of p130RB2 knockdown cells. These results suggest positive involvement of p130RB2 in the RPA32-ETAA1-ATR axis and proper re-progression of the cell cycle to maintain genome integrity.


Assuntos
Replicação do DNA , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Fosforilação , Ciclo Celular , Pontos de Checagem do Ciclo Celular
4.
J Biol Chem ; 297(1): 100882, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34144037

RESUMO

Alteration of RNA splicing is a hallmark of cellular senescence, which is associated with age-related disease and cancer development. However, the roles of splicing factors in cellular senescence are not fully understood. In this study, we identified the splicing factor PRPF19 as a critical regulator of cellular senescence in normal human diploid fibroblasts. PRPF19 was downregulated during replicative senescence, and PRPF19 knockdown prematurely induced senescence-like cell cycle arrest through the p53-p21 pathway. RNA-sequencing analysis revealed that PRPF19 knockdown caused a switch of the MDM4 splicing isoform from stable full-length MDM4-FL to unstable MDM4-S lacking exon 6. We also found that PRPF19 regulates MDM4 splicing by promoting the physical interaction of other splicing factors, PRPF3 and PRPF8, which are key components of the core spliceosome, U4/U6.U5 tri-snRNP. Given that MDM4 is a major negative regulator of p53, our findings imply that PRPF19 downregulation inhibits MDM4-mediated p53 inactivation, resulting in induction of cellular senescence. Thus, PRPF19 plays an important role in the induction of p53-dependent cellular senescence.


Assuntos
Processamento Alternativo , Proteínas de Ciclo Celular/genética , Senescência Celular , Enzimas Reparadoras do DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogênicas/genética , Fatores de Processamento de RNA/metabolismo , Proteínas de Ciclo Celular/metabolismo , Enzimas Reparadoras do DNA/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Fatores de Processamento de RNA/genética , Spliceossomos/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
NAR Cancer ; 2(2): zcaa005, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34316685

RESUMO

The SWI/SNF chromatin remodeling complex regulates transcription through the control of chromatin structure and is increasingly thought to play an important role in human cancer. Lung adenocarcinoma (LADC) patients frequently harbor mutations in SMARCA4, a core component of this multisubunit complex. Most of these mutations are loss-of-function mutations, which disrupt critical functions in the regulation of chromatin architecture and can cause DNA replication stress. This study reports that LADC cells deficient in SMARCA4 showed increased DNA replication stress and greater sensitivity to the ATR inhibitor (ATRi) in vitro and in vivo. Mechanistically, loss of SMARCA4 increased heterochromatin formation, resulting in stalled forks, a typical DNA replication stress. In the absence of SMARCA4, severe ATRi-induced single-stranded DNA, which caused replication catastrophe, was generated on nascent DNA near the reversed forks around heterochromatin in an Mre11-dependent manner. Thus, loss of SMARCA4 confers susceptibility to ATRi, both by increasing heterochromatin-associated replication stress and by allowing Mre11 to destabilize reversed forks. These two mechanisms synergistically increase susceptibility of SMARCA4-deficient LADC cells to ATRi. These results provide a preclinical basis for assessing SMARCA4 defects as a biomarker of ATRi efficacy.

6.
Cell ; 175(2): 558-570.e11, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30245011

RESUMO

Given that genomic DNA exerts its function by being transcribed, it is critical for the maintenance of homeostasis that DNA damage, such as double-strand breaks (DSBs), within transcriptionally active regions undergoes accurate repair. However, it remains unclear how this is achieved. Here, we describe a mechanism for transcription-associated homologous recombination repair (TA-HRR) in human cells. The process is initiated by R-loops formed upon DSB induction. We identify Rad52, which is recruited to the DSB site in a DNA-RNA-hybrid-dependent manner, as playing pivotal roles in promoting XPG-mediated R-loop processing and initiating subsequent repair by HRR. Importantly, dysfunction of TA-HRR promotes DSB repair via non-homologous end joining, leading to a striking increase in genomic aberrations. Thus, our data suggest that the presence of R-loops around DSBs within transcriptionally active regions promotes accurate repair of DSBs via processing by Rad52 and XPG to protect genomic information in these critical regions from gene alterations.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Proteínas Nucleares/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Reparo de DNA por Recombinação/fisiologia , Fatores de Transcrição/metabolismo , Linhagem Celular , DNA/genética , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA por Junção de Extremidades , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Recombinação Homóloga , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/fisiologia , RNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Fatores de Transcrição/fisiologia
8.
Oncotarget ; 8(8): 12941-12952, 2017 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-28099935

RESUMO

Well-differentiated liposarcoma (WDLPS) and dedifferentiated liposarcoma (DDLPS) are closely related tumors commonly characterized by MDM2/CDK4 gene amplification, and lack clinically effective treatment options when inoperable. To identify novel therapeutic targets, we performed targeted genomic sequencing analysis of 19 WDLPS and 37 DDLPS tumor samples using a panel of 104 cancer-related genes (NCC oncopanel v3) developed specifically for genomic testing to select suitable molecular targeted therapies. The results of this analysis indicated that these sarcomas had very few gene mutations and a high frequency of amplifications of not only MDM2 and CDK4 but also other genes. Potential driver mutations were found in only six (11%) samples; however, gene amplification events (other than MDM2 and CDK4 amplification) were identified in 30 (54%) samples. Receptor tyrosine kinase (RTK) genes in particular were amplified in 18 (32%) samples. In addition, growth of a WDLPS cell line with IGF1R amplification was suppressed by simultaneous inhibition of CDK4 and IGF1R, using palbociclib and NVP-AEW541, respectively. Combination therapy with CDK4 and RTK inhibitors may be an effective therapeutic option for WDLPS/DDLPS patients with RTK gene amplification.


Assuntos
Lipossarcoma/genética , Receptores Proteína Tirosina Quinases/genética , Neoplasias de Tecidos Moles/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Western Blotting , Feminino , Amplificação de Genes , Humanos , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase
9.
Mol Cell Biol ; 36(3): 394-406, 2016 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-26572825

RESUMO

Histone acetyltransferase binding to ORC-1 (HBO1) is a critically important histone acetyltransferase for forming the prereplicative complex (pre-RC) at the replication origin. Pre-RC formation is completed by loading of the MCM2-7 heterohexameric complex, which functions as a helicase in DNA replication. HBO1 recruited to the replication origin by CDT1 acetylates histone H4 to relax the chromatin conformation and facilitates loading of the MCM complex onto replication origins. However, the acetylation status and mechanism of regulation of histone H3 at replication origins remain elusive. HBO1 positively regulates cell proliferation under normal cell growth conditions. Whether HBO1 regulates proliferation in response to DNA damage is poorly understood. In this study, we demonstrated that HBO1 was degraded after DNA damage to suppress cell proliferation. Ser50 and Ser53 of HBO1 were phosphorylated in an ATM/ATR DNA damage sensor-dependent manner after UV treatment. ATM/ATR-dependently phosphorylated HBO1 preferentially interacted with DDB2 and was ubiquitylated by CRL4(DDB2). Replacement of endogenous HBO1 in Ser50/53Ala mutants maintained acetylation of histone H3K14 and impaired cell cycle regulation in response to UV irradiation. Our findings demonstrate that HBO1 is one of the targets in the DNA damage checkpoint. These results show that ubiquitin-dependent control of the HBO1 protein contributes to cell survival during UV irradiation.


Assuntos
Proliferação de Células/efeitos da radiação , Dano ao DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Histona Acetiltransferases/metabolismo , Fosforilação/efeitos da radiação , Ubiquitina-Proteína Ligases/metabolismo , Acetilação/efeitos da radiação , Células HEK293 , Células HeLa , Histona Acetiltransferases/química , Histona Acetiltransferases/genética , Histonas/metabolismo , Humanos , Mutação Puntual , Mapas de Interação de Proteínas , Estabilidade Proteica/efeitos da radiação , Proteólise , Ubiquitina/metabolismo , Ubiquitinação/efeitos da radiação , Raios Ultravioleta
10.
Cancer Res ; 74(14): 3880-9, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24876101

RESUMO

CBP-93872 was previously identified as a G2 checkpoint inhibitor using a cell-based high-throughput screening system. However, its molecular actions as well as cellular targets are largely unknown. Here, we uncovered the molecular mechanisms underlying abrogation of the G2 checkpoint by CBP-93872. CBP-93872 specifically abrogates the DNA double-stranded break (DSB)-induced G2 checkpoint through inhibiting maintenance but not initiation of G2 arrest because of specific inhibition of DSB-dependent ATR activation. Hence, ATR-dependent phosphorylation of Nbs1 and replication protein A 2 upon DSB was strongly suppressed in the presence of CBP-93872. CBP-93872 did not seem to inhibit DNA-end resection, but did inhibit Nbs1-dependent and ssDNA-induced ATR activation in vitro in a dose-dependent manner. Taken together, our results suggest that CBP-93872 is an inhibitor of maintenance of the DSB-specific G2 checkpoint and thus might be a strong candidate as the basis for a drug that specifically sensitizes p53-mutated cancer cells to DSB-inducing DNA damage therapy.


Assuntos
Compostos de Anilina/farmacologia , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Proteínas Nucleares/metabolismo , Propanolaminas/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Humanos , Mutação , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica
11.
Cancer Sci ; 105(7): 870-4, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24724610

RESUMO

Nuclear factor-κB (NF-κB) is a key regulator of cancer progression and the inflammatory effects of disease. To identify inhibitors of DNA binding to NF-κB, we developed a new homogeneous method for detection of sequence-specific DNA-binding proteins. This method, which we refer to as DSE-FRET, is based on two phenomena: protein-dependent blocking of spontaneous DNA strand exchange (DSE) between partially double-stranded DNA probes, and fluorescence resonance energy transfer (FRET). If a probe labeled with a fluorophore and quencher is mixed with a non-labeled probe in the absence of a target protein, strand exchange occurs between the probes and results in fluorescence elevation. In contrast, blocking of strand exchange by a target protein results in lower fluorescence intensity. Recombinant human NF-κB (p50) suppressed the fluorescence elevation of a specific probe in a concentration-dependent manner, but had no effect on a non-specific probe. Competitors bearing a NF-κB binding site restored fluorescence, and the degree of restoration was inversely correlated with the number of nucleotide substitutions within the NF-κB binding site of the competitor. Evaluation of two NF-κB inhibitors, Evans Blue and dehydroxymethylepoxyquinomicin ([-]-DHMEQ), was carried out using p50 and p52 (another form of NF-κB), and IC50 values were obtained. The DSE-FRET technique also detected the differential effect of (-)-DHMEQ on p50 and p52 inhibition. These data indicate that DSE-FRET can be used for high throughput screening of anticancer drugs targeted to DNA-binding proteins.


Assuntos
Proteínas de Ligação a DNA/análise , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Transferência Ressonante de Energia de Fluorescência/métodos , Benzamidas/farmacologia , Sítios de Ligação , Cicloexanonas/farmacologia , Sondas de DNA , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Azul Evans/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Humanos , Concentração Inibidora 50 , NF-kappa B/genética , NF-kappa B/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
12.
Carcinogenesis ; 34(11): 2486-97, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23825154

RESUMO

Inhibitors of poly(ADP-ribose) polymerase (PARP) are promising anticancer drugs, particularly for the treatment of tumors deficient in the DNA damage response (DDR). However, it is challenging to design effective therapeutic strategies for use of these compounds against cancers without DDR deficiencies. In this context, combination therapies in which PARP inhibitors are used alongside DDR inhibitors have elicited a great deal of interest. Curcumin, a component of turmeric (Curcuma longa), has been tested in clinical studies for its chemosensitizing potential; however, the mechanisms of chemosensitization by curcumin have not been fully elucidated. This study demonstrates that curcumin suppresses three major DDR pathways: non-homologous end joining (NHEJ), homologous recombination (HR) and the DNA damage checkpoint. Curcumin suppresses the histone acetylation at DNA double-strand break (DSB) sites by inhibiting histone acetyltransferase activity, thereby reducing recruitment of the key NHEJ factor KU70/KU80 to DSB sites. Curcumin also suppresses HR by reducing expression of the BRCA1 gene, which regulates HR, by impairing histone acetylation at the BRCA1 promoter. Curcumin also inhibits ataxia telangiectasia and Rad3-related protein (ATR) kinase (IC50 in vitro = 493 nM), resulting in impaired activation of ATR-CHK1 signaling, which is necessary for HR and the DNA damage checkpoint pathway. Thus, curcumin suppresses three DDR pathways by inhibiting histone acetyltransferases and ATR. Concordantly, curcumin sensitizes cancer cells to PARP inhibitors by enhancing apoptosis and mitotic catastrophe via inhibition of both the DNA damage checkpoint and DSB repair. Our results indicate that curcumin is a promising sensitizer for PARP inhibitor-based therapy.


Assuntos
Curcumina/farmacologia , Dano ao DNA/efeitos dos fármacos , Recombinação Homóloga/efeitos dos fármacos , Neoplasias/patologia , Inibidores de Poli(ADP-Ribose) Polimerases , Transdução de Sinais/efeitos dos fármacos , Acetilação/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/antagonistas & inibidores , Proteína BRCA1/metabolismo , Western Blotting , Pontos de Checagem do Ciclo Celular , Proliferação de Células/efeitos dos fármacos , Quinase 1 do Ponto de Checagem , Radioisótopos de Cobalto , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Inibidores Enzimáticos/farmacologia , Raios gama , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Recombinação Homóloga/efeitos da radiação , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Poli(ADP-Ribose) Polimerase-1 , Regiões Promotoras Genéticas , Proteínas Quinases/metabolismo , Sialoglicoproteínas/antagonistas & inibidores , Sialoglicoproteínas/metabolismo , Transdução de Sinais/efeitos da radiação , Células Tumorais Cultivadas , Fatores de Transcrição de p300-CBP/antagonistas & inibidores , Fatores de Transcrição de p300-CBP/metabolismo
13.
Cell Rep ; 3(5): 1651-62, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23684611

RESUMO

The ATM- and Rad3-related (ATR) kinase is a master regulator of the DNA damage response, yet how ATR is activated toward different substrates is still poorly understood. Here, we show that ATR phosphorylates Chk1 and RPA32 through distinct mechanisms at replication-associated DNA double-stranded breaks (DSBs). In contrast to the rapid phosphorylation of Chk1, RPA32 is progressively phosphorylated by ATR at Ser33 during DSB resection prior to the phosphorylation of Ser4/Ser8 by DNA-PKcs. Surprisingly, despite its reliance on ATR and TopBP1, substantial RPA32 Ser33 phosphorylation occurs in a Rad17-independent but Nbs1-dependent manner in vivo and in vitro. Importantly, the role of Nbs1 in RPA32 phosphorylation can be separated from ATM activation and DSB resection, and it is dependent upon the interaction of Nbs1 with RPA. An Nbs1 mutant that is unable to bind RPA fails to support proper recovery of collapsed replication forks, suggesting that the Nbs1-mediated mode of ATR activation is important for the repair of replication-associated DSBs.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Quebras de DNA de Cadeia Dupla , Replicação do DNA , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endodesoxirribonucleases , Células HEK293 , Células HeLa , Humanos , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Proteínas Quinases , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína de Replicação A/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(8): 2760-5, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21930940

RESUMO

Homeobox 9 (HOXB9), a nontransforming transcription factor overexpressed in breast cancer, alters tumor cell fate and promotes tumor progression and metastasis. Here we show that HOXB9 confers resistance to ionizing radiation by promoting DNA damage response. In nonirradiated cells, HOXB9 induces spontaneous DNA damage, phosphorylated histone 2AX and p53 binding protein 1 foci, and increases baseline ataxia telangiectasia mutated (ATM) phosphorylation. Upon ionizing radiation, ATM is hyperactivated in HOXB9-expressing cells during the early stages of the double-stranded DNA break (DSB) response, accelerating accumulation of phosphorylated histone 2AX, mediator of DNA-damage checkpoint 1, and p53 binding protein 1, at DSBs and enhances DSB repair. The effect of HOXB9 on the response to ionizing radiation requires the baseline ATM activity before irradiation and epithelial-to-mesenchymal transition induced by TGF-ß, a HOXB9 transcriptional target. Our results reveal the impact of a HOXB9-TGF-ß-ATM axis on checkpoint activation and DNA repair, suggesting that TGF-ß may be a key factor that links tumor microenvironment, tumor cell fate, DNA damage response, and radioresistance in a subset of HOXB9-overexpressing breast tumors.


Assuntos
Dano ao DNA , Transição Epitelial-Mesenquimal , Proteínas de Homeodomínio/metabolismo , Tolerância a Radiação , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular/efeitos da radiação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/efeitos da radiação , Reparo do DNA/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/efeitos da radiação , Transição Epitelial-Mesenquimal/efeitos da radiação , Feminino , Histonas/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante , Transdução de Sinais/efeitos da radiação , Fator de Crescimento Transformador beta/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
15.
Methods Mol Biol ; 782: 181-91, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21870292

RESUMO

The Ataxia telangiectasia-mutated (ATM) and the ATM-Rad3-related (ATR) kinases are master regulators of the DNA damage-signaling pathways that respond to a wide variety of DNA damage. In this chapter, we describe an in vitro biochemical assay to study the activation of ATM and ATR by double-stranded DNA breaks (DSBs) (Shiotani and Zou, 2009, Mol Cell 33, 547-58). In this assay, DNA fragments with different structural features are used to activate ATM and ATR in human cell extracts, and the activation of ATM and ATR is monitored by the phosphorylation of specific ATM and ATR substrates. Importantly, in this assay both ATM and ATR are activated in a DNA structure-regulated manner, providing a useful tool to characterize the DNA structural determinants for their activation. The four primary steps of this assay are as follows: (1) preparation of nuclear extracts from cultured human cells; (2) generation of various DNA fragments using DNA oligonucleotides or plasmids; (3) incubation of DNA fragments in extracts; (4) analysis of the phosphorylation of specific ATM or ATR substrates.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaios Enzimáticos/métodos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Proteínas de Ciclo Celular/genética , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética
16.
Mol Cell ; 43(2): 192-202, 2011 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-21777809

RESUMO

The ataxia telangiectasia-mutated and Rad3-related (ATR) kinase is a master checkpoint regulator safeguarding the genome. Upon DNA damage, the ATR-ATRIP complex is recruited to sites of DNA damage by RPA-coated single-stranded DNA and activated by an elusive process. Here, we show that ATR is transformed into a hyperphosphorylated state after DNA damage, and that a single autophosphorylation event at Thr 1989 is crucial for ATR activation. Phosphorylation of Thr 1989 relies on RPA, ATRIP, and ATR kinase activity, but unexpectedly not on the ATR stimulator TopBP1. Recruitment of ATR-ATRIP to RPA-ssDNA leads to congregation of ATR-ATRIP complexes and promotes Thr 1989 phosphorylation in trans. Phosphorylated Thr 1989 is directly recognized by TopBP1 via the BRCT domains 7 and 8, enabling TopBP1 to engage ATR-ATRIP, to stimulate the ATR kinase, and to facilitate ATR substrate recognition. Thus, ATR autophosphorylation on RPA-ssDNA is a molecular switch to launch robust checkpoint response.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Dano ao DNA , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes de Troca , Genes cdc , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo , Treonina/genética
17.
Mol Cell ; 39(2): 259-68, 2010 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-20670894

RESUMO

Cells from Fanconi anemia (FA) patients are extremely sensitive to DNA interstrand crosslinking (ICL) agents, but the molecular basis of the hypersensitivity remains to be explored. FANCM (FA complementation group M), and its binding partner, FAAP24, anchor the multisubunit FA core complex to chromatin after DNA damage and may contribute to ICL-specific cellular response. Here we show that the FANCM/FAAP24 complex is specifically required for the recruitment of replication protein A (RPA) to ICL-stalled replication forks. ICL-induced RPA foci formation requires the DNA-binding activity of FAAP24 but not the DNA translocase activity of FANCM. Furthermore, FANCM/FAAP24-dependent RPA foci formation is required for efficient ATR-mediated checkpoint activation in response to ICL. Therefore, we propose that FANCM/FAAP24 plays a role in ICL-induced checkpoint activation through regulating RPA recruiment at ICL-stalled replication forks.


Assuntos
Cromatina/metabolismo , Dano ao DNA , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cromatina/genética , Reagentes de Ligações Cruzadas/farmacologia , DNA Helicases/genética , Replicação do DNA/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi , Células HeLa , Humanos , Complexos Multiproteicos/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteína de Replicação A/genética , Proteína de Replicação A/metabolismo
18.
Mol Cell ; 33(5): 547-58, 2009 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-19285939

RESUMO

ATM and ATR are two master checkpoint kinases activated by double-stranded DNA breaks (DSBs). ATM is critical for the initial response and the subsequent ATR activation. Here we show that ATR activation is coupled with loss of ATM activation, an unexpected ATM-to-ATR switch during the biphasic DSB response. ATM is activated by DSBs with blunt ends or short single-stranded overhangs (SSOs). Surprisingly, the activation of ATM in the presence of SSOs, like that of ATR, relies on single- and double-stranded DNA junctions. In a length-dependent manner, SSOs attenuate ATM activation and potentiate ATR activation through a swap of DNA-damage sensors. Progressive resection of DSBs directly promotes the ATM-to-ATR switch in vitro. In cells, the ATM-to-ATR switch is driven by both ATM and the nucleases participating in DSB resection. Thus, single-stranded DNA orchestrates ATM and ATR to function in an orderly and reciprocal manner in two distinct phases of DSB response.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Hidrolases Anidrido Ácido , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Quinase 1 do Ponto de Checagem , Quinase do Ponto de Checagem 2 , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Endodesoxirribonucleases , Ativação Enzimática , Exodesoxirribonucleases/metabolismo , Células HeLa , Humanos , Proteína Homóloga a MRE11 , Proteínas Nucleares/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Tempo , Transfecção , Proteínas Supressoras de Tumor/antagonistas & inibidores
20.
Genes Dev ; 22(9): 1147-52, 2008 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-18451105

RESUMO

Chk1 is a kinase crucial for genomic integrity and an effector of ATR (ATM and Rad3-related) in DNA damage response. Here, we show that Chk1 regulates the DNA damage-induced ubiquitination of proliferating cell nuclear antigen (PCNA), which facilitates the continuous replication of damaged DNA. Surprisingly, this Chk1 function requires the DNA replication protein Claspin but not ATR. Claspin, which is stabilized by Chk1, regulates the binding of the ubiquitin ligase Rad18 to chromatin. Timeless, a Claspin-associating protein, is also required for efficient PCNA ubiquitination. Thus, Chk1 and the Claspin-Timeless module of replication forks not only participate in ATR signaling, but also protect stressed forks independently of ATR.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Quinases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Mutadas de Ataxia Telangiectasia , Western Blotting , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Quinase 1 do Ponto de Checagem , Replicação do DNA/genética , Células HeLa , Humanos , Hidroxiureia/farmacologia , Morfolinas/farmacologia , Plasmídeos/genética , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Pironas/farmacologia , RNA Interferente Pequeno/genética , Transfecção , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/efeitos da radiação , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...